
Divisible E-cash Made Practical

Sébastien Canard(1), David Pointcheval(2), Olivier Sanders(1,2)

and Jacques Traoré(1)

(1) Orange Labs, Caen, France
(2) École Normale Supérieure, CNRS & INRIA, Paris, France

PKC 2015, March 30, 2015



Agenda

� E-Cash

� Related Works

� Our construction

� Achieving Anonymity

� Divisible E-cash Made Practical?

� Conclusion

PKC 2015 – p 2



E-Cash

PKC 2015 – p 3



Context

� Electronic payment systems offer greater convenience to end-users
but at the cost of a loss in terms of privacy

� In 1982, Chaum proposed E-cash to reconcile the benefits of both
solutions

� E-cash is the digital analogue of regular money

PKC 2015 – p 4



E-Cash

PKC 2015 – p 5



Security Properties

� Users must be anonymous

� Banks must be able to detect double spendings

� Defrauders must be identified

� The detection should be performed offline

PKC 2015 – p 6



Divisible E-cash

� Users of E-cash systems spend coins one by one

� To remain efficient, one must use several denominations

=⇒ cumbersome for users

=⇒ change issues

� Divisible E-cash Systems allow users to withdraw a coin of value V
and to spend parts of it efficiently

PKC 2015 – p 7



Anonymity

Different notions of anonymity:

� Weak Anonymity: transactions involving the same coin are linkable

� Unlinkability: transactions involving the same coin are unlinkable but
some information on the coin is revealed

� Strong Unlinkability: transactions involving the same coin are
unlinkable and no information on the coin is revealed

� Anonymity: identification of defrauders can be performed without a
trusted entity

PKC 2015 – p 8



Related Works

PKC 2015 – p 9



Related Works

� Eurocrypt 2007: Achieving anonymity is possible. Unpractical
construction in the ROM

� FC 2008: More efficient construction but unconventional security
model

� FC 2010: Improvement of the construction of EC 07. Still too
complex

� Pairing 2012: Unpractical construction in the standard model

PKC 2015 – p 10



Divisible coin
A coin of value 2n is associated with a binary tree of depth n

tε

t0

t00

0

t01

1

0

t1

... ...

1

tε

t0

t00

z00

0

t01

z01

1

0

t1

... ...

1

tε

t0

t00

z00

0

t01

z01

1

0

t1

... ...

1

Every node s is associated with an element ts

PKC 2015 – p 11



Divisible coin
A coin of value 2n is associated with a binary tree of depth n

tε

t0

t00

0

t01

1

0

t1

... ...

1

tε

t0

t00

z00

0

t01

z01

1

0

t1

... ...

1

tε

t0

t00

z00

0

t01

z01

1

0

t1

... ...

1

Every leaf f is associated with a serial number zf

PKC 2015 – p 11



Divisible coin
A coin of value 2n is associated with a binary tree of depth n

tε

t0

t00

0

t01

1

0

t1

... ...

1

tε

t0

t00

z00

0

t01

z01

1

0

t1

... ...

1

tε

t0

t00

z00

0

t01

z01

1

0

t1

... ...

1

Given ts we can recover zf for every leaf f descending from s

PKC 2015 – p 11



Security

� To spend a value 2l , the user reveals ts with s of depth n − l

=⇒ implicitly reveals 2l serial numbers

� Revealing ts must not leak any information on the other serial
numbers.

� Only 2n serial numbers by coin

=⇒ double spendings can be detected

� Divisible E-cash systems without serial numbers are unpractical

PKC 2015 – p 12



Previous Constructions
Alice

Acc(t
(A)
1 , ...t

(A)
V )

−−−−−−−−−−→
CertA←−−−−−−−−−−

Bank

CertA ← Sign(t
(A)
i )

Bob

Acc(t
(B)
1 , ...t

(B)
V )

−−−−−−−−−−→
CertB←−−−−−−−−−−

Bank

CertB ← Sign(t
(B)
i )

To withraw a coin, users generate their own tree

Users must prove that
their trees are well-formed

=⇒ leads to complex POK during the Withraw or the Spend protocols

PKC 2015 – p 13



Previous Constructions
Alice

Acc(t
(A)
1 , ...t

(A)
V )

−−−−−−−−−−→
CertA←−−−−−−−−−−

Bank

CertA ← Sign(t
(A)
i )

Bob

Acc(t
(B)
1 , ...t

(B)
V )

−−−−−−−−−−→
CertB←−−−−−−−−−−

Bank

CertB ← Sign(t
(B)
i )

To withraw a coin, users generate their own tree and interact with the
bank to certify them (without revealing the elements ti )

Users must
prove that their trees are well-formed

=⇒ leads to complex POK during the Withraw or the Spend protocols

PKC 2015 – p 13



Previous Constructions
Alice

Acc(t
(A)
1 , ...t

(A)
V )

−−−−−−−−−−→
CertA←−−−−−−−−−−

Bank

CertA ← Sign(t
(A)
i )

Bob

Acc(t
(B)
1 , ...t

(B)
V )

−−−−−−−−−−→
CertB←−−−−−−−−−−

Bank

CertB ← Sign(t
(B)
i )

Users must prove that their trees are well-formed

=⇒ leads to complex POK during the Withraw or the Spend protocols

PKC 2015 – p 13



Our Construction

PKC 2015 – p 14



Our setting: Bilinear groups

� Bilinear groups are sets of 3 groups G1, G2 and GT of prime order p
along with a map e such that

∀(G1,G2) ∈ G1 ×G2 and a, b ∈ Zp e(G a
1 ,G

b
2 ) = e(G1,G2)a·b

e(G1,G2) = 1GT
=⇒ G1 = 1G1 or G2 = 1G2

� They play a significant role in cryptography
− Identity Based Encryption
− Group Signature
− ...

� They are compatible with the Groth-Sahai proofs system

PKC 2015 – p 15



Our construction
� Parameters: g ∈ G1, g̃ ∈ G2, ∀s, gs ← g rs for random rs

gε

g0 ...

g00 g01

e(g , g̃)y00 e(g , g̃)y01

� Our scheme makes use of only one tree, defined in the parameters

⇒ No need to prove well-formedness of the tree

PKC 2015 – p 16



Our construction
� Parameters: g ∈ G1, g̃ ∈ G2, ∀s, gs ← g rs for random rs

gε

g0 ...

g00 g01

e(g , g̃)y00 e(g , g̃)y01

g̃ε7→00

g̃ε7→01

g̃01 7→01

� ∀ s and f , g̃s 7→f ← g̃
yf
rs ⇒ e(gs , g̃s 7→f ) = e(g rs , g̃

yf
rs ) = e(g , g̃)yf

⇒ No need to prove well-formedness of the tree

PKC 2015 – p 16



Withdraw
� To withdraw a coin, users generate a secret x

$← Zp and gets a
certificate Certx on it

⇒ Withdrawal achievable in constant time

� Implicitly defined the users’ trees as:

g x
ε

g x
0

g x
00

0

g x
01

1

0

g x
1

... ...

1

g x
ε

g x
0

g x
00

e(g , g̃)y00·x

0

g x
01

e(g , g̃)y01·x

1

0

g x
1

... ...

1

PKC 2015 – p 17



Withdraw
� To withdraw a coin, users generate a secret x

$← Zp and gets a
certificate Certx on it

⇒ Withdrawal achievable in constant time

� Implicitly defined the serial numbers as

g x
ε

g x
0

g x
00

0

g x
01

1

0

g x
1

... ...

1

g x
ε

g x
0

g x
00

e(g , g̃)y00·x

0

g x
01

e(g , g̃)y01·x

1

0

g x
1

... ...

1

PKC 2015 – p 17



Spend

To spend 2l , the user:

� computes:

− ts ← g x
s

− π ← NIZK{x ,Certx : ts = g x
s ∧ Certx is valid}

� sends (ts , π) to the merchant who verifies π

PKC 2015 – p 18



Detection of Double-Spending
� The bank recovers the serial numbers by computing

e(ts , g̃s 7→f ) = e(g , g̃)yf ·x

� If users spend nodes 0 and 00:

g x
ε

g x
0

g x
00

e(g , g̃)y00·x

0

g x
01

e(g , g̃)y01·x

1

0

g x
1

... ...

1

g x
ε

g x
0

g x
00

e(g , g̃)y00·x

0

g x
01

1

0

g x
1

... ...

1

PKC 2015 – p 19



Anonymity

� Transactions with the same coin involve elements g x
s1 , g x

s2 ,...

� Linking g x
si with g x

sj is hard, even with knowledge of the public
parameters

⇒ users are unlinkable

� Our scheme can be upgraded to achieve strong unlinkability and
anonymity

PKC 2015 – p 20



Achieving Anonymity

PKC 2015 – p 21



Achieving Strong Unlinkability

� The previous solution reveals the spent node s. Hiding such
information rise two issues:

1. Users must now prove that they use a valid gs without revealing it

2. The bank no longer knows which g̃s 7→f it must use

� To fix the former, the bank will compute certificates Cert(s) on
every gs

⇒ allow users to prove that gs is valid

PKC 2015 – p 22



Recovering Serial Numbers
� The bank only knows the level of the spent node

g x
ε

ts = g x
0 ?

g x
00

0

g x
01

1

0

ts = g x
1 ?

g x
10

0

g x
11

1

1

g x
ε

ts = g x
0 ?

g x
00

e(g , g̃)y00·x

0

g x
01

e(g , g̃)y01·x

1

0

ts = g x
1 ?

g x
10

R10

0

g x
11

R11

1

1

� It will compute e(ts , g̃s 7→f ) for every s of this level

PKC 2015 – p 23



Recovering Serial Numbers
� The bank only knows the level of the spent node

g x
ε

ts = g x
0 ?

g x
00

e(g , g̃)y00·x

0

g x
01

e(g , g̃)y01·x

1

0

ts = g x
1 ?

g x
10

R10

0

g x
11

R11

1

1

� It will compute e(ts , g̃s 7→f ) for every s of this level

PKC 2015 – p 23



Deposit

� The bank will recover the valid serial numbers but also invalid ones

� This increases the computational and storage cost of deposits but
ensures detection of double spendings

� The resulting protocol is then strongly unlinkable and secure

PKC 2015 – p 24



Achieving Anonymity

� If a double-spending is detected the defrauder must be identified

� To achieve anonymity, this identification must be performed without
a trusted entity

� We add to the previous protocol a double-spending tag which
ensures the following properties:

− Users cannot be identified as long as they are honest

− Any defrauder can be identified by using only public information

PKC 2015 – p 25



Divisible E-Cash Made Practical?

PKC 2015 – p 26



Efficiency
In the ROM, we can achieve a remarkable efficiency:

� The data sent to the merchant consist of

Elements in Zp G1

2 5

� Users can precompute most of these elements. During the
transaction the user only has to perform:

Operations Zp Hash
1 1

� We implemented this protocol on a SIM card embedded in a
NFC-enabled phone. Spending values < 100$ can be performed in
less than 500 ms

PKC 2015 – p 27



Efficiency

� The size of the public parameters remains reasonable: 330 KBytes
for n = 10

� The bank must additionally store the elements g̃s 7→f (721 KBytes)

� Our construction is the first efficient one which achieves constant
time for both the withdrawal and spending protocols

� Even in the worst-case scenario of our anonymous scheme, storing
the serial numbers of one million transactions requires 10 GBytes

PKC 2015 – p 28



Conclusion

PKC 2015 – p 29



Conclusion

� We proposed a practical construction for divisible E-cash

� Our construction is flexible: one can efficiently achieve different
levels of anonymity

� Our scheme can be instantiated either in the ROM or in the
standard model

� Our scheme is the first practical one achieving constant-time for
both withdrawal and spending protocols

� Improving the efficiency of deposits of our anonymous scheme
remains an open problem

PKC 2015 – p 30



Appendix

PKC 2015 – p 31



Computational Assumption

� The unlinkability of our scheme relies on the following assumption:

Given (g , g x , g a, g y ·a, g z) ∈ G5
1 and (g̃ , g̃ a, g̃ y ) ∈ G3

2, it is hard to
decide whether:

z = x · y · a or z is random

The only way to get a product of 3 scalars is to combine g y ·a with
elements of G2. However, x does not appear in the latter.

PKC 2015 – p 32



Double-Spending Tag

� Each node s is now associated with a pair (gs , hs)← (g rs , hrs ) for
some h ∈ G1

� To spend 2l , the user whose public key is upk ∈ G1 also computes:

vs ← upk · hxs

and proves its validity

PKC 2015 – p 33



Identification

� A double-spending involves two nodes s and s ′ with a common leaf
f . Therefore, we have:

e(hs , g̃s 7→f ) = e(hs′ , g̃s′ 7→f )

� Then, e(vs , g̃s 7→f ) · e(vs′ , g̃s′ 7→f )−1 = e(upk, g̃s 7→f · g̃−1s′ 7→f )

� The defrauders can thus be identified by exhaustive search

PKC 2015 – p 34


