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Context

� Electronic payment systems offer greater convenience to end-users
but at the cost of a loss in terms of privacy

� In 1982, Chaum proposed E-cash to reconcile the benefits of both
solutions

� E-cash is the digital analogue of regular money
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E-Cash

PKC 2015 – p 5



Security Properties

� Users must be anonymous

� Banks must be able to detect double spendings

� Defrauders must be identified

� The detection should be performed offline
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Divisible E-cash

� Users of E-cash systems spend coins one by one

� To remain efficient, one must use several denominations

=⇒ cumbersome for users

=⇒ change issues

� Divisible E-cash Systems allow users to withdraw a coin of value V
and to spend parts of it efficiently
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Anonymity

Different notions of anonymity:

� Weak Anonymity: transactions involving the same coin are linkable

� Unlinkability: transactions involving the same coin are unlinkable but
some information on the coin is revealed

� Strong Unlinkability: transactions involving the same coin are
unlinkable and no information on the coin is revealed

� Anonymity: identification of defrauders can be performed without a
trusted entity
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Related Works
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Related Works

� Eurocrypt 2007: Achieving anonymity is possible. Unpractical
construction in the ROM

� FC 2008: More efficient construction but unconventional security
model

� FC 2010: Improvement of the construction of EC 07. Still too
complex

� Pairing 2012: Unpractical construction in the standard model
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Divisible coin
A coin of value 2n is associated with a binary tree of depth n
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Every node s is associated with an element ts
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Every leaf f is associated with a serial number zf
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Given ts we can recover zf for every leaf f descending from s
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Security

� To spend a value 2l , the user reveals ts with s of depth n − l

=⇒ implicitly reveals 2l serial numbers

� Revealing ts must not leak any information on the other serial
numbers.

� Only 2n serial numbers by coin

=⇒ double spendings can be detected

� Divisible E-cash systems without serial numbers are unpractical
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Previous Constructions
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To withraw a coin, users generate their own tree

Users must prove that
their trees are well-formed

=⇒ leads to complex POK during the Withraw or the Spend protocols
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Our Construction

PKC 2015 – p 14



Our setting: Bilinear groups

� Bilinear groups are sets of 3 groups G1, G2 and GT of prime order p
along with a map e such that

∀(G1,G2) ∈ G1 ×G2 and a, b ∈ Zp e(G a
1 ,G

b
2 ) = e(G1,G2)a·b

e(G1,G2) = 1GT
=⇒ G1 = 1G1 or G2 = 1G2

� They play a significant role in cryptography
− Identity Based Encryption
− Group Signature
− ...

� They are compatible with the Groth-Sahai proofs system
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Our construction
� Parameters: g ∈ G1, g̃ ∈ G2, ∀s, gs ← g rs for random rs
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� Our scheme makes use of only one tree, defined in the parameters

⇒ No need to prove well-formedness of the tree
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Withdraw
� To withdraw a coin, users generate a secret x

$← Zp and gets a
certificate Certx on it

⇒ Withdrawal achievable in constant time

� Implicitly defined the users’ trees as:
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� Implicitly defined the serial numbers as
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Spend

To spend 2l , the user:

� computes:

− ts ← g x
s

− π ← NIZK{x ,Certx : ts = g x
s ∧ Certx is valid}

� sends (ts , π) to the merchant who verifies π
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Detection of Double-Spending
� The bank recovers the serial numbers by computing

e(ts , g̃s 7→f ) = e(g , g̃)yf ·x

� If users spend nodes 0 and 00:
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Anonymity

� Transactions with the same coin involve elements g x
s1 , g x

s2 ,...

� Linking g x
si with g x

sj is hard, even with knowledge of the public
parameters

⇒ users are unlinkable

� Our scheme can be upgraded to achieve strong unlinkability and
anonymity
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Achieving Anonymity
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Achieving Strong Unlinkability

� The previous solution reveals the spent node s. Hiding such
information rise two issues:

1. Users must now prove that they use a valid gs without revealing it

2. The bank no longer knows which g̃s 7→f it must use

� To fix the former, the bank will compute certificates Cert(s) on
every gs

⇒ allow users to prove that gs is valid
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Recovering Serial Numbers
� The bank only knows the level of the spent node
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� It will compute e(ts , g̃s 7→f ) for every s of this level
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Deposit

� The bank will recover the valid serial numbers but also invalid ones

� This increases the computational and storage cost of deposits but
ensures detection of double spendings

� The resulting protocol is then strongly unlinkable and secure
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Achieving Anonymity

� If a double-spending is detected the defrauder must be identified

� To achieve anonymity, this identification must be performed without
a trusted entity

� We add to the previous protocol a double-spending tag which
ensures the following properties:

− Users cannot be identified as long as they are honest

− Any defrauder can be identified by using only public information
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Divisible E-Cash Made Practical?
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Efficiency
In the ROM, we can achieve a remarkable efficiency:

� The data sent to the merchant consist of

Elements in Zp G1

2 5

� Users can precompute most of these elements. During the
transaction the user only has to perform:

Operations Zp Hash
1 1

� We implemented this protocol on a SIM card embedded in a
NFC-enabled phone. Spending values < 100$ can be performed in
less than 500 ms
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Efficiency

� The size of the public parameters remains reasonable: 330 KBytes
for n = 10

� The bank must additionally store the elements g̃s 7→f (721 KBytes)

� Our construction is the first efficient one which achieves constant
time for both the withdrawal and spending protocols

� Even in the worst-case scenario of our anonymous scheme, storing
the serial numbers of one million transactions requires 10 GBytes
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Conclusion
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Conclusion

� We proposed a practical construction for divisible E-cash

� Our construction is flexible: one can efficiently achieve different
levels of anonymity

� Our scheme can be instantiated either in the ROM or in the
standard model

� Our scheme is the first practical one achieving constant-time for
both withdrawal and spending protocols

� Improving the efficiency of deposits of our anonymous scheme
remains an open problem
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Appendix
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Computational Assumption

� The unlinkability of our scheme relies on the following assumption:

Given (g , g x , g a, g y ·a, g z) ∈ G5
1 and (g̃ , g̃ a, g̃ y ) ∈ G3

2, it is hard to
decide whether:

z = x · y · a or z is random

The only way to get a product of 3 scalars is to combine g y ·a with
elements of G2. However, x does not appear in the latter.
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Double-Spending Tag

� Each node s is now associated with a pair (gs , hs)← (g rs , hrs ) for
some h ∈ G1

� To spend 2l , the user whose public key is upk ∈ G1 also computes:

vs ← upk · hxs

and proves its validity
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Identification

� A double-spending involves two nodes s and s ′ with a common leaf
f . Therefore, we have:

e(hs , g̃s 7→f ) = e(hs′ , g̃s′ 7→f )

� Then, e(vs , g̃s 7→f ) · e(vs′ , g̃s′ 7→f )−1 = e(upk, g̃s 7→f · g̃−1s′ 7→f )

� The defrauders can thus be identified by exhaustive search
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