Divisible E-cash Made Practical

Sébastien Canard $^{(1)},$ David Pointcheval $^{(2)},$ Olivier Sanders $^{(1,2)}$ and Jacques Traoré $^{(1)}$

(1) Orange Labs, Caen, France(2) École Normale Supérieure, CNRS & INRIA, Paris, France

PKC 2015, March 30, 2015

Agenda

- E-Cash
- Related Works
- Our construction
- Achieving Anonymity
- Divisible E-cash Made Practical?
- Conclusion

- Electronic payment systems offer greater convenience to end-users but at the cost of a loss in terms of privacy
- In 1982, Chaum proposed E-cash to reconcile the benefits of both solutions
- E-cash is the digital analogue of regular money

E-Cash

Security Properties

- Users must be anonymous
- Banks must be able to detect double spendings
- Defrauders must be identified
- The detection should be performed offline

Divisible E-cash

- Users of E-cash systems spend coins one by one
- To remain efficient, one must use several denominations
 ⇒ cumbersome for users
 ⇒ change issues
- Divisible E-cash Systems allow users to withdraw a coin of value V and to spend parts of it efficiently

Anonymity

Different notions of anonymity:

- Weak Anonymity: transactions involving the same coin are linkable
- Unlinkability: transactions involving the same coin are unlinkable but some information on the coin is revealed
- Strong Unlinkability: transactions involving the same coin are unlinkable and no information on the coin is revealed
- Anonymity: identification of defrauders can be performed without a trusted entity

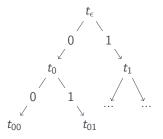
Related Works

Related Works

- Eurocrypt 2007: Achieving anonymity is possible. Unpractical construction in the ROM
- FC 2008: More efficient construction but unconventional security model
- FC 2010: Improvement of the construction of EC 07. Still too complex
- Pairing 2012: Unpractical construction in the standard model

Divisible coin

A coin of value 2^n is associated with a binary tree of depth n

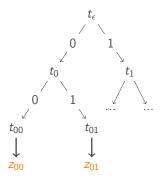


Every node s is associated with an element t_s

PKC 2015 - p 11

Divisible coin

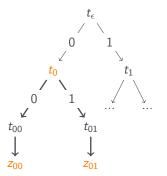
A coin of value 2^n is associated with a binary tree of depth n



Every leaf f is associated with a serial number z_f

Divisible coin

A coin of value 2^n is associated with a binary tree of depth n



Given t_s we can recover z_f for every leaf f descending from s

PKC 2015 - p 11

Security

- To spend a value 2^l, the user reveals t_s with s of depth n − l
 ⇒ implicitly reveals 2^l serial numbers
- Revealing t_s must not leak any information on the other serial numbers.
- Only 2ⁿ serial numbers by coin

 \implies double spendings can be detected

- Divisible E-cash systems without serial numbers are unpractical

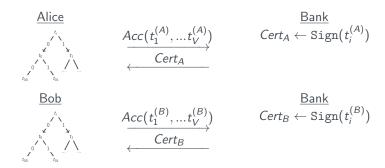
Previous Constructions

To withraw a coin, users generate their own tree

Bank

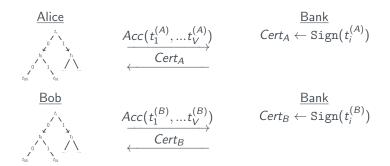
PKC 2015 - p 13

Previous Constructions



To withraw a coin, users generate their own tree and interact with the bank to certify them (without revealing the elements t_i)

Previous Constructions



Users must prove that their trees are well-formed

 \implies leads to complex POK during the Withraw or the Spend protocols

Our Construction

Our setting: Bilinear groups

Bilinear groups are sets of 3 groups G₁, G₂ and G_T of prime order p along with a map e such that

$$\forall (G_1, G_2) \in \mathbb{G}_1 \times \mathbb{G}_2 \text{ and } a, b \in \mathbb{Z}_p \ e(G_1^a, G_2^b) = e(G_1, G_2)^{a \cdot b} \\ e(G_1, G_2) = \mathbb{1}_{\mathbb{G}_T} \Longrightarrow G_1 = \mathbb{1}_{\mathbb{G}_1} \text{ or } G_2 = \mathbb{1}_{\mathbb{G}_2}$$

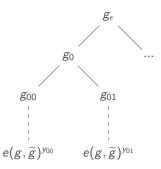
- They play a significant role in cryptography
 - Identity Based Encryption
 - Group Signature

- ...

- They are compatible with the Groth-Sahai proofs system

Our construction

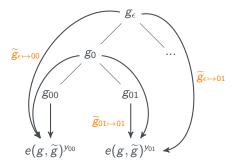
- Parameters: $g \in \mathbb{G}_1$, $\widetilde{g} \in \mathbb{G}_2$, orall s, $g_s \leftarrow g^{r_s}$ for random r_s



- Our scheme makes use of only one tree, defined in the parameters \Rightarrow No need to prove well-formedness of the tree

Our construction

- Parameters: $g \in \mathbb{G}_1$, $\widetilde{g} \in \mathbb{G}_2$, orall s, $g_s \leftarrow g^{r_s}$ for random r_s



• $\forall s \text{ and } f, \ \widetilde{g}_{s\mapsto f} \leftarrow \widetilde{g}^{\frac{y_f}{r_s}} \quad \Rightarrow e(g_s, \widetilde{g}_{s\mapsto f}) = e(g^{r_s}, \widetilde{g}^{\frac{y_f}{r_s}}) = e(g, \widetilde{g})^{y_f}$

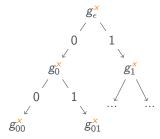
PKC 2015 - p 16

Withdraw

- To withdraw a coin, users generate a secret $x \xleftarrow{\$} \mathbb{Z}_p$ and gets a certificate Cert_x on it

 \Rightarrow Withdrawal achievable in constant time

• Implicitly defined the users' trees as:

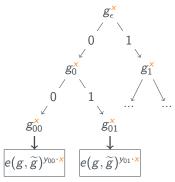


Withdraw

- To withdraw a coin, users generate a secret $x \xleftarrow{\$} \mathbb{Z}_p$ and gets a certificate Cert_x on it

 \Rightarrow Withdrawal achievable in constant time

• Implicitly defined the serial numbers as



To spend 2^{\prime} , the user:

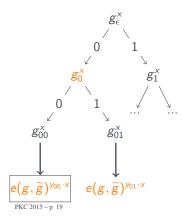
computes:

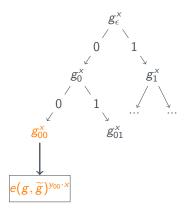
 $-t_s \leftarrow g_s^{\star}$

- $\pi \leftarrow NIZK\{x, Cert_x : t_s = g_s^x \land Cert_x \text{ is valid}\}$
- sends (t_s,π) to the merchant who verifies π

Detection of Double-Spending

- The bank recovers the serial numbers by computing $e(t_s, \widetilde{g}_{s\mapsto f}) = e(g, \widetilde{g})^{y_f \cdot \times}$
- If users spend nodes 0 and 00:





Anonymity

- Transactions with the same coin involve elements $g_{s_1}^{\times}, g_{s_2}^{\times}, \dots$
- Linking $g_{s_i}^{\times}$ with $g_{s_j}^{\times}$ is hard, even with knowledge of the public parameters

 \Rightarrow users are unlinkable

Our scheme can be upgraded to achieve strong unlinkability and anonymity

Achieving Anonymity

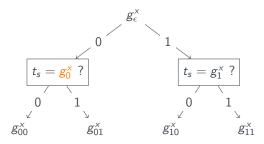
Achieving Strong Unlinkability

- The previous solution reveals the spent node *s*. Hiding such information rise two issues:
 - 1. Users must now prove that they use a valid g_s without revealing it
 - **2**. The bank no longer knows which $\widetilde{g}_{s\mapsto f}$ it must use
- To fix the former, the bank will compute certificates *Cert*(*s*) on every *g_s*

 \Rightarrow allow users to prove that g_s is valid

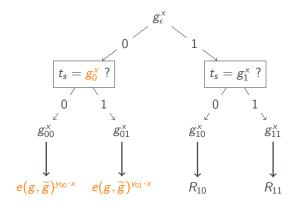
Recovering Serial Numbers

• The bank only knows the level of the spent node



Recovering Serial Numbers

• The bank only knows the level of the spent node



• It will compute $e(t_s, \widetilde{g}_{s\mapsto f})$ for every s of this level

- The bank will recover the valid serial numbers but also invalid ones
- This increases the computational and storage cost of deposits but ensures detection of double spendings
- The resulting protocol is then strongly unlinkable and secure

Achieving Anonymity

- If a double-spending is detected the defrauder must be identified
- To achieve anonymity, this identification must be performed without a trusted entity
- We add to the previous protocol a double-spending tag which ensures the following properties:
 - Users cannot be identified as long as they are honest
 - Any defrauder can be identified by using only public information

Divisible E-Cash Made Practical?

Efficiency

In the ROM, we can achieve a remarkable efficiency:

• The data sent to the merchant consist of

Elements in	\mathbb{Z}_p	\mathbb{G}_1
	2	5

• Users can precompute most of these elements. During the transaction the user only has to perform:

Operations	\mathbb{Z}_p	Hash
	1	1

- We implemented this protocol on a SIM card embedded in a NFC-enabled phone. Spending values <100\$ can be performed in less than 500 ms

- The size of the public parameters remains reasonable: 330 KBytes for n = 10
- The bank must additionally store the elements $\widetilde{g}_{s\mapsto f}$ (721 KBytes)
- Our construction is the first efficient one which achieves constant time for both the withdrawal and spending protocols
- Even in the worst-case scenario of our anonymous scheme, storing the serial numbers of one million transactions requires 10 GBytes

Conclusion

Conclusion

- We proposed a practical construction for divisible E-cash
- Our construction is flexible: one can efficiently achieve different levels of anonymity
- Our scheme can be instantiated either in the ROM or in the standard model
- Our scheme is the first practical one achieving constant-time for both withdrawal and spending protocols
- Improving the efficiency of deposits of our anonymous scheme remains an open problem

Appendix

Computational Assumption

• The unlinkability of our scheme relies on the following assumption:

Given $(g, g^x, g^a, g^{y \cdot a}, g^z) \in \mathbb{G}_1^5$ and $(\tilde{g}, \tilde{g}^a, \tilde{g}^y) \in \mathbb{G}_2^3$, it is hard to decide whether:

 $z = x \cdot y \cdot a$ or z is random

The only way to get a product of 3 scalars is to combine $g^{y \cdot a}$ with elements of \mathbb{G}_2 . However, x does not appear in the latter.

Double-Spending Tag

- Each node s is now associated with a pair $(g_s, h_s) \leftarrow (g^{r_s}, h^{r_s})$ for some $h \in \mathbb{G}_1$
- To spend 2', the user whose public key is $upk \in \mathbb{G}_1$ also computes:

 $v_s \leftarrow \texttt{upk} \cdot h_s^x$

and proves its validity

Identification

• A double-spending involves two nodes *s* and *s'* with a common leaf *f*. Therefore, we have:

$$e(h_s, \widetilde{g}_{s\mapsto f}) = e(h_{s'}, \widetilde{g}_{s'\mapsto f})$$

• Then,
$$e(v_s, \widetilde{g}_{s\mapsto f}) \cdot e(v_{s'}, \widetilde{g}_{s'\mapsto f})^{-1} = e(\underset{s\mapsto f}{\operatorname{upk}}, \widetilde{g}_{s\mapsto f} \cdot \widetilde{g}_{s'\mapsto f}^{-1})$$

• The defrauders can thus be identified by exhaustive search